Look up over the white sand beaches of Mauritius and you may see a gigantic sail, much like the kind used by paragliders or kite surfers but the size of a three-bedroom apartment, looping figure-eights overhead. The sail isn’t a tourist attraction — it’s creating electricity for the power grid of this island nation off the coast of East Africa.
Launched in December by German company SkySails Power, the massive wing is the world’s first fully autonomous commercial “airborne wind energy” (AWE) system. For the past two months, the company says, it has been delivering a little under its goal of 100 kilowatts —typically enough to power up to 50 homes. That’s just a tiny fraction of the island’s electricity demand, but, SkySails hopes, a sign of the future.
As the world heads towards net-zero emissions, pretty much every pathway for future electricity production foresees a big role for wind. The International Energy Association forecasts wind energy skyrocketing 11-fold by 2050, with wind and solar together accounting for 70 percent of the planet’s electricity demands. Thanks to the expanding number of wind turbines dotting fields and adorning ridgelines worldwide, the cost of wind power has plummeted about 40 percent over the past decade.
But some experts say those massive turbines aren’t always the best solution — they can be expensive or logistically impossible to install in remote locations or deep waters, and just can’t reach the lofty heights where the wind blows hardest. To harvest these spots, the key may be to fly a kite. Dozens of companies and a handful of academic institutions are now investigating a plethora of airborne options. These range from soft wings that convert the tug and pull on a kite’s line to useful energy, to complex rigid craft that carry turbines and generators on board and shuttle electricity down a tether.
Read more at: Yale Environment 360