A Stanford University analysis(link is external) could help policymakers across the U.S. spend billions of dollars in new federal infrastructure funding more wisely. The study, published March 31 in Frontiers in Sustainable Cities, presents a first-of-its-kind framework to design the most efficient building mix for an urban district along with systems that supply wastewater treatment, cooling, heating and electricity. The approach optimizes hourly demand and supply of power and water with integrated neighborhood-based power and water plants, significantly reducing costs and pollution compared to traditional systems that serve larger areas. This, in turn, could lead to more walkable, livable and affordable cities.
“Instead of building blindly, we can use this framework to look at the longer-term, forecast development effects and put numbers behind plans,” said study lead author Pouya Rezazadeh Kalehbasti(link is external), a graduate student in civil and environmental engineering at Stanford’s School of Engineering at the time of the research.
Cities as problem and solution
Urban areas account for more than two-thirds of global energy consumption and carbon dioxide emissions, according to UN estimates. Their water sources are increasingly stressed by global warming and burgeoning populations. A solution lies in coordinating the design of systems that supply power, water and wastewater treatment. Unlike traditionally large, centralized plants with segregated functions, this local, integrated arrangement can make it possible to achieve a variety of efficiencies, such as directing unused electricity or heat from a power system to running a wastewater system or using wastewater to cool a power generating system.
Read more at: Stanford University
Aerial view of Songdo, Korea, a city collaboratively designed by architects and urban planners as a model for sustainable, high-tech urban living. (Photo Credit: Michael Lepech / Stanford University)