A new tool can better assess an important but overlooked indicator of global warming: the variety of bugs, worms, and snails living in high mountain streams.
Water-based invertebrates are especially vulnerable when the climate swings from historic droughts to massive floods. Because they serve as food for other forms of alpine life, such as birds, bats, frogs and fish, ecologists worry about the insects’ ability to thrive.
Understanding how these small creatures are affected by climate change requires understanding where we ought to find them. Yet, classic ecological theories did not account for what a team of UC Riverside ecologists and their UC collaborators found on a recent survey of aquatic life in California’s Sierra Nevada.
As a step toward protecting them, the team applied a new theory for predicting biodiversity to high mountain streams. That theory, and the results of the field survey that gave rise to it, are now detailed in an article in the journal Ecological Monographs.
“We’ve come up with new ways of thinking about biodiversity in high mountain Sierra streams, because the old ways weren’t successful for us,” said Kurt Anderson, associate professor of evolution and ecology, and article co-author.
Read more at: University of California - Riverside
Image of a stream encountered by researchers in the Sierra Nevada mountains. (Photo Credit: Matthew Green/UCR)