Atmospheric researchers from the international CLOUD consortium have discovered a mechanism that allows nuclei for ice clouds to form and rapidly grow in the upper troposphere. The discovery is based on cloud chamber experiments to which a team from Goethe University contributed highly specialised measurements. Although the conditions for nucleus formation are only fulfilled in the Asian monsoon region, the mechanism is expected to have an impact on ice cloud formationacross large parts of the Northern Hemisphere.

The Asian monsoon transports enormous amounts of air from atmospheric layers close to Earth’s surface to a height of around 15 kilometres. Like in a gigantic elevator, human-induced pollutants also end up in the upper troposphere in this way. A research team from the CLOUD consortium (Cosmics Leaving Outdoor Droplets), including atmospheric researchers from Goethe University in Frankfurt, have reproduced the conditions prevailing there, among them cosmic radiation, in their experimental chamber at the CERN particle accelerator centre in Geneva.

In the process, they identified that up to 100 times more aerosol particles form from ammonia, nitric acid and sulphuric acid than when only two of these substances are present. These particles are then available on the one hand as condensation nuclei for liquid water droplets in clouds and on the other hand as solid seeds for pure ice clouds, so-called cirrus clouds. The research team also observed that ice clouds with the three-component particles already form at lower water vapour supersaturation than anticipated. This means that the ice clouds already develop under conditions that atmospheric researchers worldwide had so far assumed did not lead to the formation of cirrus clouds. With model calculations from around the globe, the CLOUD research team was also able to show that the cloud nuclei can spread across large parts of the Northern Hemisphere within just a few days.

Read more at: Goethe Universitat Frankfurt

Air pollutants form the condensation nuclei for ice clouds or cirrus clouds (here: Cirrus spissatus). When ammonia, nitric acid and sulfuric acid are present together, they form such condensation nuclei particularly effectively. (Photo Credit: Joachim Curtius, Goethe-University Frankfurt)