To power our increasingly electrified society, energy storage technology must evolve and adapt to meet the growing demand. Lithium-ion batteries, already essential to myriad technology, will require dramatic improvements in high-energy density, safety, temperature resilience, and environmental sustainability in order to provide the type of emission-free future that so many envision.
Now, a team of engineers led by Y. Shirley Meng, professor at the Pritzker School of Molecular Engineering, have demonstrated liquefied gas electrolytes that can simultaneously provide all four essential properties. The research, performed between Meng’s University of California San Diego and UChicago labs, provides a path to sustainable, fire-extinguishing, state-of-the-art batteries that can be developed at scale. Their work was published in Nature Energy.
Yijie Yin, a nanoengineering PhD student and co-first author of the paper, shares how this work came about.
“In 2017, a team of UC San Diego nanoengineers discovered hydrofluorocarbon molecules that are gasses at room temperature and will liquefy under a certain pressure,” Yin said. “They then invented a new type of electrolyte, which is called 'Liquefied Gas Electrolyte' (LGE).” The related results were published in Science.
Read more at: University of Chicago
Pritzker Molecular Engineering Professor Y. Shirley Meng (left) and her team, including PhD student Yijie Yin (right), demonstrate how liquified gas electrolytes are not only safer but promise more sustainable operation. (Photo by Baharak Sayahpour)