Changes in atmospheric density after sunset can cause hot pockets of gas called ‘plasma bubbles’ to form over the Earth’s equator, resulting in communication disruptions between satellites and the Earth. New AI models are now helping scientists to predict plasma bubble events and create a forecast. The work was presented this week at the National Astronomy Meeting (NAM 2022) by Sachin Reddy, a PhD student at University College London.
Shortly after sunset, pockets of super-heated gas called ‘plasma bubbles’ form in the upper atmosphere and stretch into space (up to 900km above the Earth’s surface). These bubbles start small and grow rapidly – from the size of a football pitch to that of a small country in just a couple of hours. As the bubbles grow bigger, they can prevent satellites from communicating with the Earth by blocking and warping their radio signals.
To predict plasma bubbles, a team of researchers has collated 8 years of data from the SWARM satellite mission. The spacecraft has an automatic bubble detector on-board called the Ionospheric Bubble Index. This compares changes in the density of electrons and the magnetic field strength to check if bubbles are present: a strong correlation between the two indicates the presence of a plasma bubble.
Read more at Royal Astronomical Society