Against the backdrop of climate change and rising water demand, tools for adequately modeling water availability are much needed. In a new study, researchers applied a large-scale model linking surface water to groundwater, which can be used for estimating water resources at a high spatial resolution.
Groundwater – the water contained in porous and fractured rocks underground - is the largest freshwater source on Earth apart from the ice caps and glaciers. It feeds into rivers, lakes, and other surface water bodies and is essential for ecosystems. In addition, groundwater systems are an integral part of agricultural irrigation, especially in regions with scarce surface water resources.
Existing large-scale models tend to oversimplify groundwater flow, often do not adequately integrate human water management, and operate at coarser resolutions than needed for modeling small-scale hydrologic processes. In a new study in Geoscientific Model Development, a team of IIASA researchers coupled the Community Water Model (CWatM) (Burek et al., 2020) with the groundwater flow model MODFLOW, allowing for the reproduction of water tables at very fine spatial resolutions. The integrated model simulates hydrological processes occurring in soil and surface water bodies at the hillslope scale, with grid cells smaller than 1 km. It can be used to model water cycles at various geographical levels, ranging from small basins to entire countries.
Read more at: International Institute for Applied Systems Analysis
Photo Credit: Pexels via Pixabay