A research group from Nagoya University in Japan has developed a model to clarify the importance of analyzing the formation of clouds from human and natural particles. Since many climate models simplify the formation of atmospheric particles from organic vapors, these findings could lead to more accurate predictions of climate change and global warming.
Primary organics are gases or particles that are emitted mainly from fossil fuel combustion, industrial processes, and the burning of plants and trees. When these components enter the atmosphere, they interact with atmospheric oxygen and sunlight. This process converts them into secondary organic aerosols, a major constituent of PM2.5 particulate matter that harms health and the climate.
A subset of these aerosols can even serve as cloud condensation nuclei, which, as their name implies, form the nucleus that clouds form around. Such changes in cloud properties affect their ability to reflect both short-wave and long-wave radiation, consequently influencing the Earth's radiative balance.
Associate Professor Hitoshi Matsui at the Graduate School of Environmental Studies, Nagoya University, argues for the importance of the distribution of these cloud condensation nuclei in remote areas, especially over the Pacific and Atlantic oceans. “As remote ocean areas cover a large fraction (about two-thirds) of the Earth’s surface, remote clouds play a critical role in determining the Earth's radiative balance,” he said. “Understanding the driving factors of cloud condensation nuclei in remote areas is therefore helpful in creating reliable climate projections.”
Read more at Nagoya University
Photo Credit: klickblick via Pixabay