Every day, billions of red blood cells pass through the spleen, an organ that is responsible for filtering out old or damaged blood cells. This task is made more difficult when the blood cells are misshapen, as they are in patients with sickle cell disease, which affects millions of people throughout the world. Sickled blood cells can clog the spleen’s filters, leading to a potentially life-threatening situation.
Researchers at MIT, Nanyang Technological University in Singapore, the Pasteur Institute in Paris, and other institutions have now designed a microfluidic device, or “spleen-on-a-chip,” that can model how this phenomenon, known as acute splenic sequestration, arises.
The researchers found that low oxygen levels make it more likely that the spleen’s filters will become clogged. They also showed that boosting oxygen levels can unclog the filters, which may help to explain how blood transfusions help patients suffering from this condition.
Read more at Massachusetts Institute of Technology
Image: Using a spleen-on-a-chip device, the research team imaged these sickled red blood cells as they were captured and consumed by a macrophage (labeled with green, fluorescent dye).
Credits: Courtesy of the researchers