Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments.

Most robots cannot. But researchers at Carnegie Mellon University have created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling.

"We were inspired by nature to develop a robot that can perform different tasks and adapt to its environment without adding actuators or complexity," said Dinesh K. Patel, a post-doctoral fellow in the Morphing Matter Lab in the School of Computer Science'sHuman-Computer Interaction Institute. "Our bistable actuator is simple, stable and durable, and lays the foundation for future work on dynamic, reconfigurable soft robotics."

The bistable actuator is made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.

Read more at Carnegie Mellon University

Image via Carnegie Mellon University