From steering a car to swinging a tennis racket, we learn to execute all kinds of skilled movements during our lives. You might think this learning is only implemented by neurons, but a new study by researchers at The Picower Institute for Learning and Memory at MIT shows the essential role of another brain cell type: astrocytes.
Just as teams of elite athletes train alongside staffs of coaches, ensembles of neurons in the brain’s motor cortex depend on nearby astrocytes to help them learn to encode when and how to move, and the optimal timing and trajectory of a motion, the study shows. Describing a series of experiments in mice, the new paper in the Journal of Neuroscience reveals two specific ways that astrocytes directly impact motor learning, maintaining an optimal molecular balance in which the neuronal ensembles can properly refine movement performance.
“This finding is part of a body of work from our lab and other labs that elevate the importance of astrocytes to neuronal encoding and hence to behavior,” says senior author Mriganka Sur, the Newton Professor of Neuroscience in The Picower Institute and MIT’s Department of Brain and Cognitive Sciences. “This shows that while the population coding of behaviors is a neuronal function, we need to include astrocytes as partners with them.”
Read more at Massachusetts Institute of Technology
Image: Researchers intervened in the brains of mice to affect the contribution of astrocytes to motor learning. Imaging based on calcium levels in astrocytes demonstrates the effect of one such intervention (activating Gq signaling with a chemical called CNO). Cells lit up bright orange upon CNO application (right panel). Credits: Jennifer Shih/Sur Lab