The green hydrogen economy is a sustainable alternative to fossil fuels. However, one of the challenges of constructing a global hydrogen economy is hydrogen transportation by sea. A new paper proposes solid air as a medium for recycling cold energy across the hydrogen liquefaction supply chain.

The world is undergoing an energy transition to reduce CO2 emissions and mitigate climate change. The COVID-19 pandemic and the Russia-Ukraine war have further increased the interest of Europe and Western countries to invest in the hydrogen economy as an alternative to fossil fuels. Hydrogen can significantly reduce geopolitical risks if the diversity of future hydrogen energy suppliers is increased.

Hydrogen is a particularly challenging product to transport safely. One option is to liquefy hydrogen, which requires cooling to 20 Kelvin (-253 °C). This is an expensive process and requires around 30% of the energy stored within the hydrogen.

A pioneering approach developed by IIASA researchers and colleagues proposes solid air (nitrogen or oxygen) as a medium for recycling cooling energy across the hydrogen liquefaction supply chain. At standard temperature and pressure, air is a gas, but under certain conditions, it can become a liquid or solid. Solid Air Hydrogen Liquefaction (SAHL) consists of storing the cooling energy from the regasification of hydrogen, by solidifying air, and transporting the solid air back to where the hydrogen was liquefied. The solid air is then used to reduce the energy consumption for liquefying hydrogen. The process is divided into four main steps: hydrogen regasification, solid air transportation, hydrogen liquefaction, and liquid hydrogen transportation.

Read more at International Institute for Applied Systems Analysis

Image: Solid Air Hydrogen Liquefaction (SAHL). Credit: Hunt et al.