In the face of global warming and other environmental changes, corals in the Atlantic Ocean have declined precipitously in recent years, while corals in the Pacific and Indian Oceans are faring better. By describing several species of symbiotic algae that these corals need to grow, an international team led by Penn State has found that these mutualistic relationships from the Indo-Pacific may be more flexible and ultimately resilient to higher ocean temperatures than those in the Atlantic.
Coral reefs are vast geological structures made of calcium carbonate produced by coral animals whose colonies possess dense populations of photosynthetic algae from the family Symbiodiniaceae — herein referred to as "symbionts" — within their tissues. Coral bleaching occurs when environmental conditions, such as rising ocean temperatures, cause the relationship between the algae and the coral animals to breakdown, resulting in a white, or bleached, colony. While corals can recover, bleaching may result in coral mortality, depending on the intensity and duration of the stress.
“Coral bleaching not only affects the corals themselves, but also entire ecosystems of organisms — from invertebrates, like sea urchins and spiny lobsters, to vertebrates, like fish and sea turtles,” said Todd LaJeunesse, professor of biology, Penn State. “It’s important to study the biology of corals and their symbionts so we can predict how they will respond to future environmental changes, especially ocean warming.”
Read more at: Penn State University
Corals in the Indo-Pacific may be more resilient to climate change than those in the Atlantic, according to a new study describing multiple species of thermally tolerant algal symbionts that enable corals to acquire energy from sunlight. (Photo Credit: Allison Lewis)