If we could rewind the tape of species evolution around the world and play it forward over hundreds of millions of years to the present day, we would see biodiversity clustering around regions of tectonic turmoil. Tectonically active regions such as the Himalayan and Andean mountains are especially rich in flora and fauna due to their shifting landscapes, which act to divide and diversify species over time.
But biodiversity can also flourish in some geologically quieter regions, where tectonics hasn’t shaken up the land for millennia. The Appalachian Mountains are a prime example: The range has not seen much tectonic activity in hundreds of millions of years, and yet the region is a notable hotspot of freshwater biodiversity.
Now, an MIT study identifies a geological process that may shape the diversity of species in tectonically inactive regions. In a paper appearing today in Science, the researchers report that river erosion can be a driver of biodiversity in these older, quieter environments.
They make their case in the southern Appalachians, and specifically the Tennessee River Basin, a region known for its huge diversity of freshwater fishes. The team found that as rivers eroded through different rock types in the region, the changing landscape pushed a species of fish known as the greenfin darter into different tributaries of the river network. Over time, these separated populations developed into their own distinct lineages.
Read more at Massachusetts Institute of Technology
Image: An MIT study of the freshwater greenfin darter fish suggests river erosion can be a driver of biodiversity in tectonically inactive regions. Credit: Jose-Luis Olivares/MIT with fish photo by Isaac Szabo