In shallow waters, offshore wind turbines are fixed to the ocean floor. However, in deep water areas where winds are typically stronger and have the capacity to reap more than double the energy, floating offshore wind turbines must be moored to the seabed where the ocean is too deep for fixed structures. Floating offshore wind (FOSW) is one of the most promising clean energy technologies with a potential market worth nearly $16 billion – but science and technology solutions are needed to help reduce the cost of developing, deploying, and maintaining these complex systems.
Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) are developing sensing technologies consisting of fiber-optic cables, which could be installed on FOSW structures that have been planned off the California coast. This would allow structures to self-monitor damaging conditions that could lead to costly repairs and would also help gauge how FOSW impacts marine mammals by detecting their activity.
In collaboration with experts in materials science, engineering, geophysics, and FOSW developers from around the world, Berkeley Lab scientist Yuxin Wu is now working to develop solutions to reduce the cost of FOSW development and deployment, while minimizing potential environmental impacts.
Read more at: Lawrence Berkeley National Laboratory
The study was based in Philadelphia, a city that the researchers said experiences high rates of both poverty and extreme weather. (Photo Credit: Photo by ActionVance via Unsplash)