Tropical mountain ecosystems, including montane forests, are relatively little studied, yet they are home to significant biodiversity and provide important ecosystem services, such as water supply and participation in regulation of temperature and regional and global climate. The data available on mountain vegetation and its dynamics falls far short of what is needed to simulate with confidence its interaction with the atmosphere in response to climate change.
A new study published in the journal Plant Ecology & Diversity by a group of scientists affiliated with universities in Brazil and several other South American countries, as well as the United Kingdom, casts light on these questions. An effective way to bridge this gap, the authors of the article argue, would be to create “a transdisciplinary network” capable of studying the natural dynamics of mountain ecosystems and their responses to global change drivers locally, regionally and across the continent, within the framework of a socio-ecological system.
“The results of our research show that very little information of the kind needed to model mountain clusters in South America is available. We need more specific data to do this modeling, especially if we want to include socio-ecological diversity. We advocate the creation of a network of sites representing the heterogeneity of social and ecological conditions in montain ecosystems with the aim of quantifying the hitherto neglected role of these ecosystems in carbon and water cycling, as well as other ecosystem services,” Laszlo Karoly Nagy, first author of the article, told Agência FAPESP.
Read more at: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Modeling projections depend on the installation of networks specific to these areas in Brazil and the Andes, where the available data falls far short of what is needed (Photo Credit: Laszlo Karoly Nagy)