A new GEOMAR study, now published in the journal npj Climate and Atmospheric Science, has investigated how future changes in weather patterns could affect the tropical Pacific Ocean and its ecosystems. The research, based on complex computer models, has shown that these changes will have far-reaching consequences for ocean circulation. The authors stress the need to take this more into account in future climate models.
The strength of the wind has an important influence on ocean circulation. This is particularly true for extreme events such as storm fronts, tropical storms and cyclones. These weather patterns, which last from a few days to a few weeks, will change in the future due to climate change. In particular, the average energy input into the ocean from mid-latitude storms is expected to decrease, while equatorial regions will become more active. Scientists call these different weather patterns “Atmospheric Synoptic Variability” (ASV).
The two climate researchers Dr Olaf Duteil from the GEOMAR Helmholtz Centre for Ocean Research Kiel and Professor Dr Wonsun Park from the IBS Center for Climate Physics and Pusan National University, Korea, have now for the first time investigated the integrated effects of long-term changes in these weather patterns on the Pacific basin in a modelling study. The results show how important it is to take these changes into account in climate models. They have now published their findings in the Nature journal Climate and Atmospheric Science.
From a climate point of view, the weather is usually considered as “noise” and is not systematically analysed in long-term climate projections, say the two researchers. “However, it is not enough to look at average atmospheric properties, such as mean wind speeds, to understand the influence of climate change on the ocean,” says Duteil, “it is crucial to consider the cumulative effect of short-term changes in weather patterns to get a complete picture”.
Read more at Helmholtz Centre for Ocean Research Kiel (GEOMAR)
Image: An example of synoptic variability patterns in the Pacific Ocean as seen from space. (Photo: EUMETSAT)