NASA’s James Webb Space Telescope and Hubble Space Telescope have united to study an expansive galaxy cluster known as MACS0416. The resulting panchromatic image combines visible and infrared light to assemble one of the most comprehensive views of the universe ever taken. Located about 4.3 billion light-years from Earth, MACS0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster.
The image reveals a wealth of details that are only possible to capture by combining the power of both space telescopes. It includes a bounty of galaxies outside the cluster and a sprinkling of sources that vary over time, likely due to gravitational lensing – the distortion and amplification of light from distant background sources.
This cluster was the first of a set of unprecedented, super-deep views of the universe from an ambitious, collaborative Hubble program called the Frontier Fields, inaugurated in 2014. Hubble pioneered the search for some of the intrinsically faintest and youngest galaxies ever detected. Webb’s infrared view significantly bolsters this deep look by going even farther into the early universe with its infrared vision.
Read more at NASA/Goddard Space Flight Center
Image: This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by Webb. The image reveals a wealth of details that are only possible to capture by combining the power of both space telescopes. In this image, blue represents data at wavelengths of 0.435 and 0.606 microns (Hubble filters F435W and F606W); cyan is 0.814, 0.9, and 1.05 microns (Hubble filters F814W, and F105W and Webb filter F090W); green is 1.15, 1.25, 1.4, 1.5, and 1.6 microns (Hubble filters F125W, F140W, and F160W, and Webb filters F115W and F150W); yellow is 2.00 and 2.77 microns (Webb filters F200W, and F277W); orange is 3.56 microns (Webb filter F356W); and red represents data at 4.1 and 4.44 microns (Webb filters F410M and F444W). NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).