Seagrasses provide the foundation of one of the most highly biodiverse, yet vulnerable, coastal marine ecosystems globally. They arose in three independent lineages from their freshwater ancestors some 100 million years ago and are the only fully submerged, marine flowering plants. Moving to such a radically different environment is a rare evolutionary event and definitely not easy. How did they do it? New reference quality genomes provide important clues with relevance to their conservation and biotechnological application.
An international group of 38 researchers coordinated by Professor Dr. Yves Van de Peer, Ghent University, Belgium, Professor Dr. Jeanine Olsen, University of Groningen, Netherlands, Professor Dr. Thorsten Reusch, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, Dr. Gabriele Procaccini, Stazione Zoologica Anton Dohrn of Napoli, Italy, and the Joint Genome Institute, Berkeley, California, United States of America, sequenced and analyzed the genomes of three of the most important seagrass species – the iconic Mediterranean endemic Neptune grass (Posidonia oceanica), the broadly distributed Little Neptune grass (Cymodocea nodosa) and the Caribbean endemic Turtlegrass (Thalassia testudinum). The researchers first examined genome structure and then compared gene families and pathways associated with structural and physiological adaptations, between the seagrasses and their related freshwater relatives. Their findings are presented today in a peer-reviewed publication in the scientific journal Nature Plants, entitled “Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment”.
Seagrass-based ecosystems provide multiple functions and services – for instance as protection against erosion that preserves coastal seascapes, as biodiversity hotspots for associated animals and algae and as a nature-based solution for climate mitigation owing to their carbon storage capacity in belowground biomass. Both conservation and restoration are areas of intensive research because seagrasses are being lost, as are coral reefs, to climate warming and other human impacts.
Read more at Helmholtz Centre for Ocean Research Kiel (GEOMAR)
Photo Credit: Paul Asman and Jill Lenoble via Wikimedia Commons