• Less than a year after the first research flight kicked off NASA’s Oceans Melting Greenland campaign, data from the new program are providing a dramatic increase in knowledge of how Greenland’s ice sheet is melting from below. Two new research papers in the journal Oceanography, including one by UCI Earth system scientist Mathieu Morlighem, use OMG observations to document how meltwater and ocean currents are interacting along Greenland’s west coast and to improve seafloor maps used to predict future melting and sea level rise.

  • Geographer Tim DeVries and colleagues determine why the ocean has absorbed more carbon over the past decade.

     

  • Thwaites Glacier on the edge of West Antarctica is one of the planet’s fastest-moving glaciers. Research shows that it is sliding unstoppably into the ocean, mainly due to warmer seawater lapping at its underside.

    But the details of its collapse remain uncertain. The details are necessary to provide a timeline for when to expect 2 feet of global sea level rise, and when this glacier’s loss will help destabilize the much larger West Antarctic Ice Sheet. Recent efforts have used satellites to map the underlying terrain, which affects how quickly the ice mass will move, and measure the glacier’s thickness and speed to understand the physics of its changes.

  • A study led by UC Santa Cruz researchers has found that drought dramatically increases the severity of West Nile virus epidemics in the United States, although populations affected by large outbreaks acquire immunity that limits the size of subsequent epidemics.

    The study, published February 8 in Proceedings of the Royal Society B, involved researchers from UC Santa Cruz, Stanford University, and the New York State Department of Health. They analyzed 15 years of data on human West Nile virus infections from across the United States and found that epidemics were much larger in drought years and in regions that had not suffered large epidemics in the past.

  • With new methods of reconstruction, climate researchers in Bern have been able to demonstrate that some 9,000 to 5,000 years ago, the Mediterranean climate was considerably warmer than previous studies had suggested. Among other things, previous concerns regarding the reliability of climate models could thus be dispelled.

    Climate reconstructions are necessary because reliable measurement data are only available for the last 150 years. For this reason, research on past climate change uses so-called ‘proxies’. These are indicators with which it is possible to reconstruct temperatures in the past. A widespread reconstruction method examines pollen which is embedded in lake sediments. From the composition of this pollen, it is possible to determine the plant species which occurred at a particular location in the past – and since the temperatures that the individual species require are also known, it is possible to reconstruct the temperature conditions for the period in question.

  • A University of Wyoming researcher contributed to a paper that determined a “Snowball Earth” event actually took place 100 million years earlier than previously projected, and a rise in the planet’s oxidation resulted from a number of different continents -- including what is now Wyoming -- that were once connected.

  • Tropical Cyclone 04S formed north of La Reunion Island on February 4 and continued to track slowly toward the island. This ended an unusual drought of tropical cyclone formation in that part of the Indian Ocean that began in July 2016. When NASA's Terra passed over the newly-formed tropical cyclone imagery showed a concentration of strong thunderstorms around the center of the compact storm. The storm was later renamed Tropical Cyclone Carlos.

  • Researchers have developed an infrared imaging system that could one day offer low-cost, real-time detection of methane gas leaks in pipelines and at oil and gas facilities. Leaks of methane, the primary component of natural gas, can be costly and dangerous while also contributing to climate change as a greenhouse gas.

  • Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes. The response of boreal lakes to nitrogen deposition will strongly depend on each lake’s content of organic carbon, which are predicted to increase with future warmer and wetter climate. This according to a thesis at Umeå University.

    The worldwide increase of inorganic nitrogen deposition via fossil fuel combustion, fertilization and forestry has been intervening drastically with the Earths’ natural nitrogen cycle. Food webs of boreal lakes, that have historically received little nitrogen deposition until now, are expected to be especially susceptible to increases in inorganic nitrogen availability.

  • As the world struggles to make progress to limit climate change, researchers are finding ways to adapt to warmer winter temperatures — by developing environmentally friendly ways of producing artificial snow.

    Chances are if you know anything about Norway, you know it’s a place where skiing was born.

    Norse mythology describes gods and goddesses hunting on skis, and 4000–year-old petroglyphs from northern Norway include some of the earliest known drawings of people on skis. One of the most recognizable Norwegian paintings worldwide depicts two skiers in 1206 fleeing to safety with the country’s two-year-old prince, Håkon Håkonsson.