• Whether intentionally set to consume agricultural waste or naturally ignited in forests or peatlands, open-burning fires impact the global climate system in two ways which, to some extent, cancel each other out. On one hand, they generate a significant fraction of the world’s carbon dioxide emissions, which drive up the average global surface temperature. On the other hand, they produce atmospheric aerosols, organic carbon, black carbon, and sulfate-bearing particulates that can lower that temperature either directly, by reflecting sunlight skyward, or indirectly, by increasing the reflectivity of clouds. Because wildfire aerosols play a key role in determining the future of the planet’s temperature and precipitation patterns, it’s crucial that today’s climate models — upon which energy and climate policymaking depend — accurately represent their impact on the climate system.

  • Wildlife ecologists who study the effects of climate change assume, with support from several studies, that warming temperatures caused by climate change are forcing animals to move either northward or upslope on mountainsides to stay within their natural climate conditions.

    But a new study of lowland and higher-mountain bird species by wildlife ecologists Bill DeLuca and David King at the University of Massachusetts Amherst now reports an unexpected and “unprecedented” inconsistency in such shifts. The majority of the mountain bird community responded against expectation and shifted downslope despite warming trends in the mountains. They say the result “highlights the need for caution when applying conventional expectations to species’ responses to climate change.”

  • A key glacier in Antarctica is breaking apart from the inside out, suggesting that the ocean is weakening ice on the edges of the continent.

    The Pine Island Glacier, part of the ice shelf that bounds the West Antarctic Ice Sheet, is one of two glaciers that researchers believe are most likely to undergo rapid retreat, bringing more ice from the interior of the ice sheet to the ocean, where its melting would flood coastlines around the world.

    A nearly 225-square-mile iceberg broke off from the glacier in 2015, but it wasn’t until Ohio State University researchers were testing some new image-processing software that they noticed something strange in satellite images taken before the event.

  • California’s six years of drought has left 102 million dead trees across 7.7 million acres of forest in its wake, the U.S. Forest Service (USFS) announced following an aerial survey. If that is not horrendous enough, 62 million trees died in the year 2016 alone—an increase of more than 100 percent compared to 2015.

    “The scale of die-off in California is unprecedented in our modern history,” Randy Moore, a forester for the U.S. Forest Service, told the Los Angeles Times, adding that trees are dying “at a rate much quicker than we thought.”

  • Milder winters have led to earlier growing seasons and noticeable effects on the breeding habits of some predatory birds, according to research by Boise State biologists Shawn Smith and Julie Heath, in collaboration with Karen Steenhof, and The Peregrine Fund’s Christopher McClure. Their work was recently published in the Journal of Animal Ecology under the title “Earlier nesting by generalist predatory bird is associated with human responses to climate change.”

  • Every year, trade winds over the Sahara Desert sweep up huge plumes of mineral dust, transporting hundreds of teragrams — enough to fill 10 million dump trucks — across North Africa and over the Atlantic Ocean. This dust can be blown for thousands of kilometers and settle in places as far away as Florida and the Bahamas.

    The Sahara is the largest source of windblown dust to the Earth’s atmosphere. But researchers from MIT, Yale University, and elsewhere now report that the African plume was far less dusty between 5,000 and 11,000 years ago, containing only half the amount of dust that is transported today.

  • A new multi-institutional study of the so-called global warming “hiatus” phenomenon — the possible temporary slowdown of the global mean surface temperature (GMST) trend said to have occurred from 1998 to 2013 — concludes the hiatus simply represents a redistribution of energy within the Earth system, which includes the land, atmosphere and the ocean.

    In a paper published today in Earth’s Future, a journal of the American Geophysical Union, lead author Xiao-Hai Yan of the University of Delaware, along with leading scientists from the National Oceanic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR), National Aeronautics and Space Administration (NASA), Scripps Institution of Oceanography, and University of Washington, discuss new understandings of the global warming “hiatus” phenomenon.

  • The environmental impact of your Thanksgiving dinner depends on where the meal is prepared.

    Carnegie Mellon University researchers calculated the carbon footprint of a typical Thanksgiving feast – roasted turkey stuffed with sausage and apples, green bean casserole and pumpkin pie – for each state. The team based their calculations on the way the meal is cooked (gas versus electric range), the specific state’s predominant power source and how the food is produced in each area.

    They found that dinners cooked in Maine and Vermont, states that rely mostly on renewable energy, emit the lowest amounts of carbon dioxide, a greenhouse gas that is tied to climate change. States that use coal power, such as Wyoming, West Virginia and Kentucky, have the highest carbon dioxide emissions.

  • If society continues to pump greenhouse gases into the atmosphere at the current rate, Americans later this century will have to endure, on average, about 15 daily maximum temperature records for every time that the mercury notches a record low, new research indicates.

    That ratio of record highs to record lows could also turn out to be much higher if the pace of emissions increases and produces even more warming, according to the study led by scientists at the National Center for Atmospheric Research (NCAR).

  • It turns out bird poop helps cool the Arctic.

    That’s according to new research from Colorado State University atmospheric scientists, who are working to better understand key components of Arctic climate systems.