• Researchers in the Singapore-ETH Centre’s Future Cities Laboratory developed a method to quantify ecosystem services of street trees. Using nearly 100,000 images from Google Street View, the study helps further understanding on how green spaces contribute to urban sustainability.

    Do you remember the last time you escaped the hot summer sun to enjoy a cool reprieve in the shade beneath a broad-leafed tree? While sizzling summer days may seem far away right now in the northern hemisphere, tropical cities like Singapore deal with solar radiation on a daily basis.

  • In small village communities, local resources are often not used sustainably

  • A team of international researchers led by University of Freiburg hydrologist Dr. Andreas Hartmann suggests that inclusion of currently missing key hydrological processes in large-scale climate change impact models can significantly improve our estimates of water availability. The study shows that groundwater recharge estimates for 560 million people in karst regions in Europe, the Middle East and Northern Africa, are much higher than previously estimated from current large-scale models. The scientists have shown that model estimates based on entire continents up to now have greatly underestimated in places the amount of groundwater that is recharged from fractions of surface runoff. This finding suggests that more work is needed to ensure sufficient realism in large-scale hydrologic models before they can be reliably used for local water management. The team has published their research findings in the scientific journal “Proceedings of the National Academy of Sciences (PNAS).”

  • Jefferson Project researchers test effects of common road salt, additives, and alternatives

    Organic additives found in road salt alternatives — such as those used in the commercial products GeoMelt and Magic Salt — act as a fertilizer to aquatic ecosystems, promoting the growth of algae and organisms that eat algae, according to new research published today in the Journal of Applied Ecology. Low levels of magnesium chloride — an alternative type of salt found in the commercial product Clear Lane – boost populations of amphipods, tiny crustaceans that feed on algae and serve as an important food source for fish.

  • The small organisms that slip unnoticed through sand play an important role in keeping our oceans healthy and productive, according to a Florida State University researcher. 

  • An invasive species of marsh grass that spreads, kudzu-like, throughout North American wetlands, may provide similar benefits to protected wetlands as native marsh grasses. According to new research from North Carolina State University, the invasive marsh grass’s effects on carbon storage, erosion prevention and plant diversity in protected wetlands are neutral. The findings could impact management strategies aimed at eradicating the invasive grass.

  • Ocean acidification (OA) is spreading rapidly in the western Arctic Ocean in both area and depth, according to new interdisciplinary research reported in Nature Climate Change by a team of international collaborators, including University of Delaware professor Wei-Jun Cai.

  • A study of tiny mineral ‘inclusions’ within diamonds from Botswana has shown that diamond crystals can take billions of years to grow. One diamond was found to contain silicate material that formed 2.3 billion years ago in its interior and a 250 million-year-old garnet crystal towards its outer rim, the largest age range ever detected in a single specimen. Analysis of the inclusions also suggests that the way that carbon is exchanged and deposited between the atmosphere, biosphere, oceans and geosphere may have changed significantly over the past 2.5 billion years.

  • A Brazilian judge temporarily suspended plans to open what would be the largest gold mine in the Brazilian Amazon this week, saying the Canadian company behind the project illegally obtained land and did not adequately address concerns from indigenous communities, according to news reports.

  • Researchers from 20 of the world’s leading oceanographic research centers today warned that the world’s largest habitat – the deep ocean floor – may face starvation and sweeping ecological change by the year 2100.