• Different low carbon technologies from wind or solar energy to fossil carbon capture and sequestration (CCS) differ greatly when it comes to indirect greenhouse gas emissions in their life cycle. This is the result of a comprehensive new study conducted by an international team of scientists that is now published in the journal Nature Energy. Unlike what some critics argue, the researchers not only found that wind and solar energy belong to the more favorable when it comes to life-cycle emissions. They also show that a full decarbonization of the global power sector by scaling up these technologies would induce only modest indirect greenhouse gas emissions – and hence not impede the transformation towards a climate-friendly power system.

  • With the power-conversion efficiency of silicon solar cells plateauing around 25%, perovskites are now ideally placed to become the market’s next generation of photovoltaics. In particular, organic-inorganic lead halide perovskites offer manufacturing versatility that can potentially translate into much higher efficiency: studies have already shown photovoltaic performances above 20% across different solar cell architectures built with simple and low-cost processes.

  • Power electronics, which do things like modify voltages or convert between direct and alternating current, are everywhere. They’re in the power bricks we use to charge our portable devices; they’re in the battery packs of electric cars; and they’re in the power grid itself, where they mediate between high-voltage transmission lines and the lower voltages of household electrical sockets.

  • What’s the key ingredient to successful partnerships? York University Development Studies Professor Uwafiokun Idemudia reviewed existing research on an unorthodox union between a non-governmental organization (NGO) and an oil company with a history of spills in Nigeria. He found that collaboration was beneficial even when innate creative tensions exist, and to reach sustainable targets, the company needs to align its overall strategy with the goals of the partnership.

  • When it is cold in winter, cars tend to have starting problems. This is not much better with electric cars, which inevitably lose capacity of their rechargeable lithium-ion batteries at freezing temperatures. Now, Chinese scientists have offered a strategy to avoid plunging battery kinetics. In a study published in the journal Angewandte Chemie, they designed a battery system with a cold-enduring hard-carbon anode and a powerful lithium-rich cathode, with the important initial lithiation step integrated.

  • Replacing your everyday gas guzzler with a hydrogen fueled car could drastically reduce your carbon footprint. So why don’t we all make the switch?

  • How many solar panels does it take to cover the arena roof in Peavine Métis Settlement?

    It’s not exactly the kind of question Juan Pfeiffer was accustomed to answering over the course of earning two engineering degrees in his native Colombia, but it is precisely the question at the core of his capstone project for the Master of Science in Sustainable Energy Development (SEDV) program at the University of Calgary from which he has just graduated.

  • Scientists at the Department of Energy’s Oak Ridge National Laboratory have identified a common set of genes that enable different drought-resistant plants to survive in semi-arid conditions, which could play a significant role in bioengineering and creating energy crops that are tolerant to water deficits.

  • Tokyo - Roof-mounted solar panels are an increasingly common sight in many places. As a source of cheap, clean electricity, their advantages are obvious. However, most solar panels are opaque, and therefore cannot be placed over windows. Now, researchers at The University of Tokyo's Institute of Industrial Science (IIS) have made developments in the design of transparent solar materials.

  • The direct oxidation of methane—found in natural gas—into methanol at low temperatures has long been a holy grail. Now, researchers at Tufts have found a breakthrough way to accomplish the feat using a heterogeneous catalyst and cheap molecular oxygen, according to a paper published today in the journal Nature by a team led by Tufts University chemical engineers.