• In order to reduce the cost of next-generation polymer electrolyte fuel cells for vehicles, researchers have been developing alternatives to the prohibitively expensive platinum and platinum-group metal (PGM) catalysts currently used in fuel cell electrodes. New work at Los Alamos and Oak Ridge national laboratories is resolving difficult fuel-cell performance questions, both in determining efficient new materials and understanding how they work at an atomic level. The research is described this week in the journal Science.

  • A Métis student in the University of Saskatchewan School of Public Health, Adams is one of 16 young leaders from across Canada appointed to the Your Energy Future program.

    Participants in the year-long program, delivered in partnership by the Public Policy Forum and leadership development fellowship Action Canada, will become change-makers in Canada’s energy agenda.  They develop strategies to prepare Canadian people, communities and governments to successfully transition to a low-carbon, clean energy future.

  • University of Calgary geoscientists have developed new technology that measures, at an extremely fine scale, the interaction between water and other fluids and rock from an unconventional oil reservoir.

    Faculty of Science researchers used their micro-injection system coupled with live imaging to precisely measure fluid-rock interaction, called “wettability,” at the microscopic, or micro-scale, for the first time.

  • Petroleum-derived chemicals are intrinsic to virtually every product in today’s society, from the medicines we take to the agrochemicals that produce our food and the plastics that encase our mobile devices. As pressure mounts to reduce the world’s fossil fuel consumption, developing greener manufacturing processes that use less energy and produce less waste is becoming increasingly urgent.

  • Scientists have developed a light-activated material that can chemically convert carbon dioxide into carbon monoxide without generating unwanted byproducts. The achievement marks a significant step forward in developing technology that could help generate fuel and other energy-rich products using a solar-powered catalyst while mitigating levels of a potent greenhouse gas.

  • High-speed winds during a thunderstorm may cause trees around an electric grid to crash into the distribution system feeders causing an outage in that area. Currently, most utility companies diminish such accidents by scheduling regular tree-trimming operations. This effort is costly and is based on a rotational approach to different service areas, which may take months and sometimes years before all trees are trimmed.

  • In recent years, perovskites have taken the solar cell industry by storm. They are cheap, easy to produce and very flexible in their applications. Their efficiency at converting light into electricity has grown faster than that of any other material – from under four percent in 2009 to over 20 percent in 2017 – and some experts believe that perovskites could eventually outperform the most common solar cell material, silicon. But despite their popularity, researchers don’t know why perovskites are so efficient.

    Now experiments with a powerful “electron camera” at the Department of Energy’s SLAC National Accelerator Laboratory have discovered that light whirls atoms around in perovskites, potentially explaining the high efficiency of these next-generation solar cell materials and providing clues for making better ones.

  • Turbulence, the violently unruly disturbance of plasma, can prevent plasma from growing hot enough to fuel fusion reactions. Long a puzzling concern of researchers has been the impact on turbulence of atoms recycled from the walls of tokamaks that confine the plasma. These atoms are neutral, meaning that they have no charge and are thus unaffected by the tokamak’s magnetic field or plasma turbulence, unlike the electrons and ions — or atomic nuclei — in the plasma.  Yet, experiments have suggested that the neutral atoms may be significantly enhancing the edge plasma turbulence, hence the theoretical interest in their effects.

  • Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down.

    A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.

  • Analysis of natural sparkling mineral water has given scientists valuable clues on how to locate hot water springs.