• PhD chemistry student Leila Dehabadi has developed a new way to separate water from ethanol, the key component in alcoholic beverages and biofuel, using starch-based materials such as corn. The method could reduce costs because it doesn’t involve using additional energy to isolate the ethanol.

    “Compared to distillation, this new approach based on green chemistry and engineering will be a significant saving to biofuel and alcohol production in Saskatchewan and globally by changing the way water is separated from ethanol mixtures,” said Lee Wilson, U of S chemistry professor and Dehabadi’s supervisor. 

  • Researchers have demonstrated how a non-toxic alternative to lead could form the basis of next-generation solar cells.

  • Even oilfields aren’t immune to the ravages of time: A new study finds that as some of the world’s largest oilfields age, the energy required to keep them operating can rise dramatically even as the amount of petroleum they produce drops.

  • Photosynthesis, which allows energy from the sun to be converted into life-sustaining sugars, can also be hazardous to green plants. If they absorb too much sunlight, the extra energy destroys their tissue.

    To combat this, green plants have developed a defense mechanism known as photoprotection, which allows them to dissipate the extra energy. Researchers from MIT and the University of Verona have now discovered how the key protein in this process allows moss and green algae to protect themselves from too much sun.

  • The expansion of renewable energy has been widely criticised for increasing weather-dependent fluctuations in European electricity generation. A new study shows that this is due less to the variability of weather than from a failure to consider the large-scale weather conditions across the whole continent: many European countries are unilaterally following national strategies to expand wind energy capacities without looking beyond their own backyard.

    It would be better, however, for individual countries to work together and to promote the expansion of wind capacity in other European regions that are currently making very little use of wind power.  Balancing capacity across the continent would effectively minimise the extreme fluctuations caused by the varied weather conditions that currently affect wind speeds. This is the conclusion reached by a group of weather and energy researchers from ETH Zürich and Imperial College London in a new study, which has just been published in the journal Nature Climate Change.

  • A concentrating photovoltaic system with embedded microtracking can produce over 50 percent more energy per day than standard silicon solar cells in a head-to-head competition, according to a team of engineers who field tested a prototype unit over two sunny days last fall.

    "Solar cells used to be expensive, but now they're getting really cheap," said Chris Giebink, Charles K. Etner Assistant Professor of Electrical Engineering, Penn State. "As a result, the solar cell is no longer the dominant cost of the energy it produces. The majority of the cost increasingly lies in everything else — the inverter, installation labor, permitting fees, etc. — all the stuff we used to neglect."

  • It’s been a few years of soul-searching for Tim Duncan, the CEO of Talos Energy. The Houston-based oil company has long specialized in the shallow waters of the Gulf of Mexico off Louisiana and Texas. Yet the oil bust that began in 2014 has made the region deeply unpopular. Facing dwindling prospects for big new finds offshore, companies have instead flocked to the Permian basin of west Texas, where layer upon layer of oil-saturated rock promises decent returns even at stubbornly low oil prices.

    “We resisted the temptation to join the land race onshore,” says Duncan. But Talos did go somewhere new: Mexico. 

     

  • A SEAS researcher helped develop technology that could become the most efficient solar cell in the world.

  • Most of today’s lithium-ion batteries, which power everything from cars to phones, use a liquid as the electrolyte between two electrodes. Using a solid electrolyte instead could offer major advantages for both safety and energy storage capacity, but attempts to do this have faced unexpected challenges.

  • New research from a professor of engineering at UBC’s Okanagan Campus might hold the key to biofuels that are cheaper, safer and much faster to produce.

    “Methane is a biofuel commonly used in electricity generation and is produced by fermenting organic material,” says Cigdem Eskicioglu, an associate professor with UBC Okanagan’s School of Engineering. “The process can traditionally take anywhere from weeks to months to complete, but with my collaborators from Europe and Australia we’ve discovered a new biomass pretreatment technique that can cut production time nearly in half.”