• Since 1988, a mere 100 companies have been responsible for 71 percent of the entire world's industrial greenhouse gas emissions.

    This data comes from an inaugural report published by the Carbon Disclosure Project (CDP), an environmental non-profit. Charting the rapid expansion of the fossil fuel industry in the last 28 years, they have now released some truly staggering numbers on the world's major carbon polluters.

  • Brandon Jackson, a doctoral candidate in mechanical engineering at Michigan Technological University, has created a new computational model of an electrospray thruster using ionic liquid ferrofluid—a promising technology for propelling small satellites through space. Specifically, Jackson looks at simulating the electrospray startup dynamics; in other words, what gives the ferrofluid its characteristic spikes.

  • The future cost of energy storage technologies can now be predicted under different scenarios, thanks to a new tool created by Imperial researchers.

    Using a large database, the team can predict how much consumers will have to pay in the future for energy storage technologies based on cumulative installed capacity, current cost and future investment.

  • Can you imagine fully charging your cell phone in just a few seconds? Researchers in Drexel University’s College of Engineering can, and they took a big step toward making it a reality with their recent work unveiling of a new battery electrode design in the journal Nature Energy.

    The team, led by Yury Gogotsi, PhD,Distinguished University and Bach professor in Drexel’s College of Engineering, in the Department of Materials Science and Engineering, created the new electrode designs from a highly conductive, two-dimensional material called MXene. Their design could make energy storage devices like batteries, viewed as the plodding tanker truck of energy storage technology, just as fast as the speedy supercapacitors that are used to provide energy in a pinch — often as a battery back-up or to provide quick bursts of energy for things like camera flashes.

  • A new low-temperature solution printing technique allows fabrication of high-efficiency perovskite solar cells with large crystals intended to minimize current-robbing grain boundaries. The meniscus-assisted solution printing (MASP) technique boosts power conversion efficiencies to nearly 20 percent by controlling crystal size and orientation.

  • Carbon dioxide (CO2) is known as a greenhouse gas and plays an essential role in climate change; it is no wonder scientists have been looking for solutions to prevent its release in the environment. However, as a cheap, readily available and non-toxic carbon source, in the past few years there have been efforts to turn carbon dioxide into valuable wares, or ‘value-added’ products.

  • University of Washington researchers have invented a cellphone that requires no batteries — a major leap forward in moving beyond chargers, cords and dying phones. Instead, the phone harvests the few microwatts of power it requires from either ambient radio signals or light.

    The team also made Skype calls using its battery-free phone, demonstrating that the prototype made of commercial, off-the-shelf components can receive and transmit speech and communicate with a base station.

  • There is growing interest in developing offshore wind and wave energy facilities in the Pacific Northwest. But not much is known about the sediment and animal life along the sea floor in the region.

  • Could cellulosic biofuels – or liquid energy derived from grasses and wood – become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs? In Science, researchers at the U.S. Department of Energy-funded Great Lakes Bioenergy Research Center say yes, but with a few important caveats.

  • A research group from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences recently reported the development of a new technology to boost performance of direct methanol fuel cells (DMFCs) using high-concentration methanol as fuel, shedding some light on the design of clean and affordable alternative energy sources for portable electric devices. 

    When methanol, the fuel of DMFCs, crosses over from the anode to the cathode through the proton exchange membrane (PEM), fuel cell performance is significantly degraded, creating a major problem for the commercialization of DMFCs. Commonly, scientists use various strategies to improve DMFC performance at high concentrations of methanol. These include improving the fuel-feed system, membrane development, modification of electrodes, and water management.