• When it comes to large, high-intensity forest fires, we can expect to see a lot more in the coming years, according to South Dakota State University professor Mark Cochrane, a senior scientist at the Geospatial Sciences Center of Excellence.

  • Clear-cutting of tropical mangrove forests to create shrimp ponds and cattle pastures contributes significantly to the greenhouse gas effect, one of the leading causes of global warming, new research suggests.

  • A University of Alaska Fairbanks study has determined that warmer water migrating from the Atlantic Ocean is a surprisingly powerful contributor to Arctic sea ice decline.

    Research led by Igor Polyakov, a professor at UAF’s International Arctic Research Center and College of Natural Science and Mathematics, has found that Atlantic currents contribute to sea ice loss in the Arctic Ocean at a rate comparable to warming air temperatures.

  • Plants are currently removing more CO2 from the air than they did 200 years ago, according to new work from Carnegie’s Joe Berry and led by J. Elliott Campbell of UC Merced. The team’s findings, which are published in Nature, affirm estimates used in models from the Intergovernmental Panel on Climate Change.  

    Plants take up carbon dioxide as part of the process of photosynthesis—a series of cellular reactions through which they transform the Sun’s energy into chemical energy for food. This research from Campbell, Berry, and their colleagues constructs a new history of global changes in photosynthetic activity.

  • The storm formerly known as tropical cyclone 15S, now called Tropical Cyclone Ernie continued to strengthen as NASA's Aqua satellite captured a visible image that showed the storm developed an eye.

  • As the cost of clean technology continues to fall, the world added record levels of renewable energy capacity in 2016, at an investment level 23 per cent lower than the previous year, according to new research published today by UN Environment, the Frankfurt School-UNEP Collaborating Centre, and Bloomberg New Energy Finance.

    Global Trends in Renewable Energy Investment 2017 finds that wind, solar, biomass and waste-to-energy, geothermal, small hydro and marine sources added 138.5 gigawatts to global power capacity in 2016, up 8 per cent from the 127.5 gigawatts added the year before. The added generating capacity roughly equals that of the world's 16 largest existing power producing facilities combined.

  • El Salvador has become the first nation in the world to ban the mining of gold and other metals, ending a decades-long fight by activists to protect the country’s limited water resources.

  • The glaciers and ice caps that dot the edges of the Greenland coast are not likely to recover from the melting they are experiencing now, a study has found.

    Researchers report in the current issue of the journal Nature Communications that melting on the island passed a tipping point 20 years ago. The smallest glaciers and ice caps on the coast are no longer able to regrow lost ice.

  • The climate of the Earth follows a complex interplay of cause-and-effect chains. A change in precipitation at one location may be caused by changes on the other side of the planet. A better understanding of these “teleconnections” – the linkages between remote places – may help to better understand local impacts of future climate change. A look into the climate of the past helps to investigate the teleconnections. An international team of Japanese, British, Australian, and German scientists, with the participation of the GFZ German Research Centre for Geosciences, now investigated Japanese lake sediments to decipher the interplay between local climate changes on the northern hemisphere about 12.000 years ago. Their results, now published as Nature Scientific Report, show that a regional warming in Europe caused a cooling and an increase in snowfall in East Asia.

  • In 2011, researchers observed something that should be impossible — a massive bloom of phytoplankton growing under Arctic sea ice in conditions that should have been far too dark for anything requiring photosynthesis to survive. So, how was this bloom possible?

    Using mathematical modeling, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) found that thinning Arctic sea ice may be responsible for frequent and extensive phytoplankton blooms, potentially causing significant disruption in the Arctic food chain.