• Researchers from North Carolina State University have developed a new way to determine the rate at which nitrate pollution will make its way from groundwater into streams. The work has implications for predicting long-term pollution in groundwater-fed streams.

    Nitrate pollution, primarily from fertilizer runoff, is one of the major freshwater contaminants in the United States. Additionally, the pollution persists in aquifers – and thus in groundwater – which feed into streams over a period of years or decades.

  • Stanford geophysicists have compiled the most detailed maps yet of the geologic forces controlling the locations, types and magnitudes of earthquakes in Texas and Oklahoma.

    These new “stress maps,” published in the journals Geophysical Research Letters and Bulletin of the Seismological Society of America, provide insight into the nature of the faults associated with recent temblors, many of which appear to have been triggered by the injection of wastewater deep underground.

    “These maps help explain why injection-induced earthquakes have occurred in some areas, and provide a basis for making quantitative predictions about the potential for seismic activity resulting from fluid injection,” said study co-author Mark Zoback, the Benjamin M. Page Professor of Geophysics in Stanford’s School of Earth, Energy & Environmental Sciences.

  • A new study by University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researchers found that the Indian Ocean’s Agulhas Current is getting wider rather than strengthening. The findings, which have important implications for global climate change, suggest that intensifying winds in the region may be increasing the turbulence of the current, rather than increasing its flow rate.

  • As atmospheric carbon dioxide (CO2) levels rise, very few coral reef ecosystems will be spared the impacts of ocean acidification or sea surface temperature rise, according to a new analysis. The damage will cause the most immediate and serious threats where human dependence on reefs is highest.

    A new analysis in the journal Plos One, led by Duke University and the Université de Bretagne Occidentale, suggests that by 2050, Western Mexico, Micronesia, Indonesia, parts of Australia and Southeast Asia will bear the brunt of rising temperatures. Reef damage will result in lost fish habitats and shoreline protection, jeopardizing the lives and economic prosperity of people who depend on reefs for tourism and food.

  • It is well-established in the scientific community that increases in atmospheric CO2 levels result in global warming, but the magnitude of the effect may vary depending on average global temperature. A new study, published this week in Science Advances and led by Tobias Friedrich from the International Pacific Research Center (IPRC) at the University of HawaiÊ»i at Mānoa, concludes that warm climates are more sensitive to changes in CO2 levels than cold climates.

  • In a new study, Harvard University researchers find over 90 percent of potential new Canadian hydroelectric projects are likely to increase concentrations of the neurotoxin methylmercury in food webs near indigenous communities. 

    The research forecasts potential human health impacts of hydroelectric projects and identifies areas where mitigation efforts, such as removing the top layer of soil before flooding, would be most helpful. The works uses factors such as soil carbon and reservoir design to forecast methylmercury increases for 22 hydroelectric reservoirs under consideration or construction in Canada.

  • Solar cells made from an inexpensive and increasingly popular material called perovskite can more efficiently turn sunlight into electricity using a new technique to sandwich two types of perovskite into a single photovoltaic cell.

    Perovskite solar cells are made of a mix of organic molecules and inorganic elements that together capture light and convert it into electricity, just like today’s more common silicon-based solar cells. Perovskite photovoltaic devices, however, can be made more easily and cheaply than silicon and on a flexible rather than rigid substrate. The first perovskite solar cells could go on the market next year, and some have been reported to capture 20 percent of the sun’s energy.

  • Indian officials declared an emergency in New Delhi over the weekend as the capital city entered its second week with air pollution levels as high as 30 times above World Health Organization guidelines, several news outlets reported.

    Construction sites have been closed, operations at a coal-fired power station halted, diesel generators stopped, and officials are preparing to reinstate traffic restrictions, all to reduce smog levels across the city, which have reached their highest levels in 20 years. Officials say field burning on nearby farmland and fireworks from the recent Diwali festival helped worsen the smog conditions. 

  • Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research? A new study says yes: citizen scientists have a vital role to play.

    Citizen scientists are already providing large amounts of data for monitoring biodiversity, but they could do much more, according to a new study published in the journal Biological Conservation, which suggests that citizen science has the potential to contribute much more to regional and global assessments of biodiversity. Citizen scientists are regular people who provide data or input to science, for example by monitoring species in their community or examining satellite imagery for evidence of deforestation or land use change. 

    “Citizen scientists are already contributing enormously to environmental science,” says IIASA researcher Linda See. “For example, a huge amount of species occurrence data is provided by members of the interested public. The question we addressed was, where are citizens contributing and where are they not, and how can we draw on this phenomenon to help fill the gaps in science?”

  • How do you handle nuclear waste that will be radioactive for millions of years, keeping it from harming people and the environment?

    It isn’t easy, but Rutgers researcher Ashutosh Goel has discovered ways to immobilize such waste – the offshoot of decades of nuclear weapons production – in glass and ceramics.

    Goel, an assistant professor in the Department of Materials Science and Engineering, is the primary inventor of a new method to immobilize radioactive iodine in ceramics at room temperature. He’s also the principal investigator (PI) or co-PI for six glass-related research projects totaling $6.34 million in federal and private funding, with $3.335 million going to Rutgers.