Rice University scientists are counting on films of carbon nanotubes to make high-powered, fast-charging lithium metal batteries a logical replacement for common lithium-ion batteries.
The Rice lab of chemist James Tour showed thin nanotube films effectively stop dendrites that grow naturally from unprotected lithium metal anodes in batteries. Over time, these tentacle-like dendrites can pierce the battery’s electrolyte core and reach the cathode, causing the battery to fail.
That problem has both dampened the use of lithium metal in commercial applications and encouraged researchers worldwide to solve it.
Lithium metal charges much faster and holds about 10 times more energy by volume than the lithium-ion electrodes found in just about every electronic device, including cellphones and electric cars.
Read more at Rice University
Image: Microscope images of lithium metal anodes after 500 charge/discharge cycles in tests at Rice University show the growth of dendrites is quenched in the anode at left, protected by a film of carbon nanotubes. The unprotected lithium metal anode at right shows evidence of dendrite growth. Courtesy of the Tour Group.