To resolve the energy crisis and environmental issues, research to move away from fossil fuels and convert to eco-friendly and sustainable hydrogen energy is well underway around the world. Recently, a team of researchers at POSTECH has proposed a way to efficiently produce hydrogen fuel via water-electrolysis using inexpensive and readily available nickel as an electrocatalyst, greenlighting the era of hydrogen economy.
A POSTECH research team led by Professor Jong Kyu Kim and Ph.D. candidate Jaerim Kim of the Department of Materials Science and Engineering and a team led by Professor Jeong Woo Han and Ph.D. candidate Hyeonjung Jung of the Department of Chemical Engineering have jointly developed a highly efficient nickel-based catalyst system doped with oxophilic transition metal atoms and have identified the correlation between catalytic adsorption properties and hydrogen evolution reaction (HER) kinetics in alkaline medium. Recognized for their significance, these research findings were featured as the front cover paper for the Journal of the American Chemical Society.
Fuel cell is an eco-friendly power generating device that produces electricity using a chemical reaction in which oxygen (O₂) and hydrogen (H₂) produce water (H₂O). During this process, water electrolysis reduction occurs as a counter-reaction, which dissociates water to generate hydrogen fuel. This is known to be the most environmentally-safe and sustainable way to produce high-purity hydrogen fuel in large quantities. However, it has a downside of being costly and inefficient since it requires the use of precious metals as electrodes. In order to reduce the unit cost of hydrogen fuel produced through water-electrolysis, it is paramount to develop highly active, stable, and inexpensive electrochemical catalyst, capable of maximizing the hydrogen production performance.
Read more at Pohang University of Science & Technology (POSTECH)