From lake-draining drought in California to bridge-breaking floods in China, extreme weather is wreaking havoc. Preparing for weather extremes in a changing climate remains a challenge, however, because their causes are complex and their response to global warming is often not well understood. Now, Stanford researchers have developed a machine learning tool to identify conditions for extreme precipitation events in the Midwest, which account for over half of all major U.S. flood disasters. Published in Geophysical Research Letters, their approach is one of the first examples using AI to analyze causes of long-term changes in extreme events and could help make projections of such events more accurate.
“We know that flooding has been getting worse,” said study lead author Frances Davenport, a PhD student in Earth system science in Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “Our goal was to understand why extreme precipitation is increasing, which in turn could lead to better predictions about future flooding.”
Among other impacts, global warming is expected to drive heavier rain and snowfall by creating a warmer atmosphere that can hold more moisture. Scientists hypothesize that climate change may affect precipitation in other ways, too, such as changing when and where storms occur. Revealing these impacts has remained difficult, however, in part because global climate models do not necessarily have the spatial resolution to model these regional extreme events.
Read More: Stanford University
Photo Credit: Bessi via Pixabay