With rising global demand for agricultural commodities for use as food, feed, and bioenergy, pressure on land is increasing. At the same time, land is an important resource for tackling the principal challenges of the 21st century – the loss of biodiversity and global climate change. One solution to this conflict could be to increase agricultural productivity and thus reduce the required cropland. In an interdisciplinary model-based study, LMU geographers Julia Schneider and Dr. Florian Zabel, together with researchers from the Universities of Basel and Hohenheim, have analyzed how much land area could be saved globally through more efficient production methods and what economic effects – for example, on prices and trade – this would have. As the authors reported in the journal PLOS ONE, their modeling showed that under optimized conditions up to almost half of current cropland could be saved. As a result of increased efficiency, the prices for agricultural products would fall in all regions and global agricultural production would increase by 2.8%.
“The starting point for our work was a current scientific debate as to whether it is better for protecting biodiversity to cultivate more extensively on more land or more intensively on less land, with all the respective pros and cons,” says Schneider. “In this context, we were interested in the actual potential to take land out of agricultural production and what economic effects the implementation of such land saving would have.” To answer this question, the scientists used a process-based biophysical crop model for 15 globally important food and energy crops to analyzed what land saving potential could be obtained by agricultural intensification. For their analysis, they assumed that the yield gap between current and potentially obtainable yields can be closed by 80 percent through more efficient farming methods – such as the efficient use of fertilizers and the optimization of sowing dates or pest and disease control – and that the overall volumes of agricultural products should correspond to today’s output.
Read more at Ludwig-Maximilians-Universität München
Photo Credit: Pexels via Pixabay