Solar electricity is produced almost entirely by panels, or modules, constructed with light-absorbing cells made from silicon. Silicon is the industry standard because it is reliable and inexpensive, with structure and performance that are well understood.
But silicon cell modules are little more than 20% efficient in converting sunlight into electricity, and their production is relatively expensive and complicated. Efforts to lower technology costs relative to yield therefore include different materials or combinations of materials. One such mix is cadmium, selenium and telluride, abbreviated as CdSeTe and spoken colloquially as “CadTel.”
“CadTel makes up only about 5% of the photovoltaics market, but it has significant potential,” says Arthur Onno, an assistant research professor with the Holman Research Group in the Ira A. Fulton Schools of Engineering at Arizona State University. “For example, the absorbers are approximately 40 times thinner than those in silicon cells. Also, CadTel cells can be applied directly onto the front glass of a module through a more efficient production process called vapor transport deposition, which is the not the case for silicon. These differentiations can significantly change the manufacturing and cost structures for solar panels.”
Continue reading at Arizona State University
Image via Arizona State University