With temperatures rising and heat-waves disrupting lives around the world, cooling solutions are becoming ever more essential. This is a critical issue especially in developing countries, where summer heat can be extreme and is projected to intensify. But common cooling methods such as air conditioners are expensive, consume significant amounts of energy, require ready access to electricity, and often require coolants that deplete ozone or have a strong greenhouse effect.
An alternative to these energy-intensive cooling methods is passive daytime radiative cooling (PDRC), a phenomenon where a surface spontaneously cools by reflecting sunlight and radiating heat to the colder atmosphere. PDRC is most effective if a surface has a high solar reflectance (R) that minimizes solar heat gain, and a high, thermal emittance (Ɛ) that maximizes radiative heat loss to the sky. If R and Ɛ are sufficiently high, a net heat loss can occur, even under sunlight.
Developing practical PDRC designs has been challenging: many recent design proposals are complex or costly, and cannot be widely implemented or applied on rooftops and buildings, which have different shapes and textures. Up to now, white paints, which are inexpensive and easy to apply, have been the benchmark for PDRC. White paints, however, usually have pigments that absorb UV light, and do not reflect longer solar wavelengths very well, so their performance is only modest at best.
Continue reading at Columbia University
Image via Columbia University